20^2+35^2=x^2

Simple and best practice solution for 20^2+35^2=x^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 20^2+35^2=x^2 equation:



20^2+35^2=x^2
We move all terms to the left:
20^2+35^2-(x^2)=0
We add all the numbers together, and all the variables
-1x^2+1625=0
a = -1; b = 0; c = +1625;
Δ = b2-4ac
Δ = 02-4·(-1)·1625
Δ = 6500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{6500}=\sqrt{100*65}=\sqrt{100}*\sqrt{65}=10\sqrt{65}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{65}}{2*-1}=\frac{0-10\sqrt{65}}{-2} =-\frac{10\sqrt{65}}{-2} =-\frac{5\sqrt{65}}{-1} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{65}}{2*-1}=\frac{0+10\sqrt{65}}{-2} =\frac{10\sqrt{65}}{-2} =\frac{5\sqrt{65}}{-1} $

See similar equations:

| 4x+2+4x+3=61 | | 10x+6+10x+6=252 | | 25+10(12−x)=5(2x−7) | | 4w+96=180 | | 37s+84=180 | | 12p+84=180 | | 4z+56=180 | | 13c+37=180 | | 29u+64=180 | | 243=x3 | | -17=4v-1 | | 4x-2=3+5x | | 4x-7=2x-3+x | | 4(2x-6)=10 | | 3×10*2y=3,600 | | 3x-2+5x=6-3x | | -67=14-z | | 5x−1=7x−6 | | 2(5n-3)=8+10n-11 | | t÷-6-24=-6 | | 3(-5x+4)+20-11x=-24 | | 3(4y-6)=8y-18+4y | | -3(-5x+4)+20-11x=-24 | | k^2+14k-38=-6 | | 5x+15=60,x | | 5z+10/4=3 | | -x-80=10,x | | 7.4x+3-9=6+7 | | 0.42=1.68y | | 9r-5-6=70 | | 80=d/4 | | 17=10x-4-3x |

Equations solver categories